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Abstract 

Bayesian models provide recursive inference naturally because they can for-
mally reconcile new data and existing scientific information. However, popular 
use of Bayesian methods often avoids priors that are based on exact posterior dis-
tributions resulting from former studies. Two existing Recursive Bayesian methods 
are: Prior- and Proposal-Recursive Bayes. Prior-Recursive Bayes uses Bayesian 
updating, fitting models to partitions of data sequentially, and provides a way 
to accommodate new data as they become available using the posterior from the 
previous stage as the prior in the new stage based on the latest data. Proposal-
Recursive Bayes is intended for use with hierarchical Bayesian models and uses a 
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set of transient priors in first stage independent analyses of the data partitions. 
The second stage of Proposal-Recursive Bayes uses the posteriors from the first 
stage as proposals in an MCMC algorithm to fit the full model. We combine 
Prior- and Proposal-Recursive concepts to fit any Bayesian model, and often with 
computational improvements. We demonstrate our method with two case studies. 
Our approach has implications for big data, streaming data, and optimal adaptive 
design situations. 

Keywords: filtering, Gaussian process, hierarchical model, MCMC, parallel processing, 
sampling, sequential inference, iterative forecasting 
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1 Introduction 

Bayesian methods have been incredibly useful for scientific inquiry because they em-

power the user to customize statistical analyses for their data and desired inference as 

well as formally incorporate existing scientific information (Gelman et al., 2012). In 

particular, Bayesian hierarchical models (BHMs) also allow us to consider a complicated 

joint problem as a sequence of simpler conditional components. In his seminal paper on 

BHMs, Berliner (1996) described the hierarchical model structure heuristically in terms 

of three quintessential components: the data model, the process model, and the pa-

rameter model. Each of these three components can be extended further, but the basic 

concept that statistical models should account for measurement error, process stochas-

ticity, and parameter uncertainty, all simultaneously, is very powerful for making honest 

and reliable inference (Gelfand and Ghosh, 2015). 

Stochastic sampling approaches such as Markov chain Monte Carlo (MCMC; Gelfand 

and Smith, 1990) have facilitated the ability to fit a wide range of Bayesian models to 

data (Green et al., 2015). However, as the size of data sets grow and the complexity 

of models increase, MCMC methods for fitting models have become limited in their 

applicability for big data settings (Brockwell, 2006). Despite a proliferation of alter-

native sampling approaches (e.g., importance sampling, particle filtering, Hamiltonian 

Monte Carlo [HMC]; Doucet et al., 2001; Del Moral et al., 2006; Neal, 2011), MCMC is 

still popular, but also has fundamental weaknesses such as the inability to easily paral-

lelize the computational procedure (beyond obtaining multiple chains; e.g., Glynn and 

Heidelberger, 1992; Bradford and Thomas, 1996; Rosenthal, 2000). 

Bayesian models also facilitate the formal use of preexisting information (resulting 

from former data analyses) in future data analyses. However, despite widespread rhetoric 

claiming that previous Bayesian analyses can and should be incorporated into future 

data analyses as prior information, it is still rarely done in practice. One potential 

hurdle to the formal incorporation of prior information is the inability to characterize 

the results of a previous data analysis as an analytically tractable prior with closed 

form (e.g., McCarthy and Masters, 2005; Garrard et al., 2012). Thus, conventional 
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practical guidance suggests approximating the joint posterior distribution resulting from 

a previous data analysis (using separate data) with an appropriate joint distribution 

(e.g., multivariate normal) and then use the approximate prior in the new data analysis. 

This practice may yield a reasonable approximation in some cases, but is unsatisfying in 

the sense that recursive Bayesian analyses are not coupled exactly using well-accepted 

stochastic sampling methods such as sequential Monte Carlo (SMC), MCMC, and HMC 

to fit the models. 

In what follows, we discuss existing recursive Bayesian inference approaches and 

present a new method for performing recursive Bayesian inference using an advantageous 

combination of existing methods. Our methods are helpful in a variety of situations, 

for both hierarchical and non-hierarchical Bayesian model fitting. For ongoing data col-

lection efforts, the procedure we describe allows us to represent previous data analyses 

as priors in new analyses. We show that iterative inferential procedures can facilitate 

more rapid results using the methods we describe, especially when it is not feasible to 

fit the full model repetitively as new data arrives. Our approach can also be used to 

leverage parallel computing resources to accelerate the fitting of complicated Bayesian 

models such as those containing explicit dependence structure (e.g., Gaussian process 

models). By partitioning data sets and applying the recursive Bayesian model fitting 

procedure, we show that our approach can lead to more efficient algorithms for fitting 

Bayesian models to big data sets. Furthermore, our approach is accessible to practi-

tioners and is compatible with SMC, MCMC, and HMC methods for fitting Bayesian 

models. We demonstrate our methods with two case studies: a geostatistical model fit to 

environmental data and a hierarchical dynamic population model fit to ecological data. 

2 Methods 

Also known as “sequential” inference or Bayesian filtering, recursive Bayes (RB) relies 

on fitting a statistical model to data in a series of steps (Särkkä, 2013). Traditional RB 

inference has a natural appeal in studies where data are regularly collected over time and 

thus, it has been more commonly used in conjunction with state-space models (Chopin 
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et al., 2013). While the word “sequential” also appears in SMC, and SMC methods are 

relevant for RB (Chopin, 2002), they are not essential to the concept (as we describe in 

what follows). 

The general concept of performing an analysis in sequence is commonplace in many 

fields. While many statistical methods are developed for analyzing a full data set in a 

single procedure, it may be advantageous to analyze data sets in groups. For example, 

in addition to the situation where data arise sequentially, there may be computational 

advantages to analyze data in groups even when they are not indexed temporally. In 

what follows, we review conventional RB based on a method we refer to as “Prior-RB.” 

We contrast Prior-RB with alternative recursive statistical procedures that rely on a 

sequence of stages meant to facilitate computation. We refer to these approaches as 

“Proposal-RB” (for reasons that will become clear). Finally, we combine these two re-

cursive procedures to provide a framework for fitting Bayesian models more efficiently 

by leveraging parallel processing environments that are available in most modern com-

puters. 

2.1 Prior-Recursive Bayesian Inference 

Consider a generic data set y ≡ (y1, . . . , yn)0 and associated parametric statistical model 

y ∼ [y|θ], where θ represents model parameters and we use the bracket notation ‘[·]’ 

to represent probability distributions (Gelfand and Smith, 1990). For a specified prior 

[θ], the posterior distribution is [θ|y] ∝ [y|θ][θ]. The main concept in Prior-RB is that, 

for a given partition of the data y ≡ (y1 
0 , y2 

0 )0 , we can find the posterior distribution 

associated with the first partition [θ|y1] ∝ [y1|θ][θ] and then use it as a prior in a 

secondary analysis of the second partition 

[θ|y] ∝ [y2|θ, y1][θ|y1] , (1) 

∝ [y2|θ, y1][y1|θ][θ] . (2) 

The critical differences between the full model and the Prior-RB procedure are that: 

1) The second stage in the Prior-RB procedure requires knowledge of the conditional 

data model [y2|θ, y1] and 2) the form of the posterior resulting from the first stage in 
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Prior-RB [θ|y1] must be known analytically. However, if both distributions are known 

or at least well-approximated analytically, then we can make inference based on the full 

data set, but using only the second partition of data and the output from the first stage 

posterior. This recursive concept is useful from a meta-analytic perspective because the 

same analyst does not have to compute the first stage posterior. In fact, well-reported 

results of a previous data analysis based on a separate data set can serve as a sufficient 

statistic for reconciling inference based on both data sets. 

We can extend the basic concept of Prior-RB to accommodate multiple partitions of 

the data. Suppose that we partition the data set into J groups, y ≡ (y1 
0 , . . . , yJ 

0 )0 , then 

we can fit the first stage model as before to yield the posterior distribution [θ|y1]. For 

the jth data partition, we obtain the posterior 

! 
jY 

[θ|y1:j] ∝ [yν |θ, y1:(ν−1)] [y1|θ][θ] , (3) 
ν=2 

where, y1:j ≡ (y1 
0 , . . . , yj 

0 )0 . The J-partition Prior-RB procedure still requires analytical 

knowledge of each sequential posterior as well as the associated conditional data model 

[yν |θ, y1:(ν−1)]. 

To illustrate the Prior-RB procedure, consider the binary data set y ≡ (0, 1, 1, 1, 0, 0, 0, 1)0 , 

with data model yi ∼ Bern(θ) for i = 1, . . . , n with n = 8. Based on a prior for 

θ specified as θ ∼ Beta(1, 1), the posterior is a classical result in Bayesian statistics: P n P n[θ|y] = Beta( yi + 1, (1 − yi) + 1), which is a beta distribution with both i=1 i=1 

parameters equal to 5 in our example. 

To perform the Prior-RB method for this example with binary data, we split the 

data set into J = 4 groups resulting in y1 ≡ (0, 1)0 , y2 ≡ (1, 1)0 , y3 ≡ (0, 0)0 , and y4 ≡ 

(0, 1)0 . Then we analyze each data set recursively, using the appropriate conditional data 

model [yj |θ, y1:(j−1)] for each partition of data. For this simple model, the conditional 

data model is [yj |θ] ≡ Bern(θ) because the original data model assumed conditional 

independence of the data given θ. Thus, the Prior-RB method proceeds by finding each 

posterior recursively: [θ|y1], [θ|y1:2], [θ|y1:3], and [θ|y1:4]. It is easily shown that these 

are all beta distributions with parameter sets {2,2}, {4,2}, {4,4}, and {5,5}. Thus, the 

Prior-RB method results in the same posterior distribution (i.e., Beta(5, 5)) as fitting 
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the model to all data simultaneously. 

The practical application of Prior-RB in settings involving more realistic statistical 

models and data sets involves two challenges: 1) The ability to find the required condi-

tional data distributions and 2) the representation of the prior for the jth stage based on 

the (j − 1)th stage posterior distribution. These two challenges are exacerbated in the 

application of the Prior-RB method to situations where the data are not conditionally 

independent and/or more extensive hierarchical models are specified. We revisit these 

issues in the sections that follow. 

2.2 Proposal-Recursive Bayesian Inference 

When the data are not naturally ordered in time, it is not apparent how the Prior-RB 

concept may be helpful. We address this idea in the following section, but first we set the 

stage for it by considering a slightly different form of recursive procedure to fit Bayesian 

models. Suppose the model from the previous section is expanded to accommodate 

latent random effects βj for j = 1, . . . , J based on a natural partitioning of the data set 

y = (y1 
0 , . . . , yJ 

0 )0 (not necessarily partitioned in time). Then a generic hierarchical model 

structure for the data may be specified as yj ∼ [yj |βj ], with “process” βj ∼ [βj |θ], and 

prior θ ∼ [θ], for j = 1, . . . , J , and where βj are p×1 vectors and the data set partitions 

yj are not necessarily equal-sized. 

For example, consider the situation where J different data sets are collected by 

separate investigators and each set of coefficients βj represent a subpopulation of in-

terest. Suppose that our main goal is to make population-level inference by character-

izing the parameters θ. These parameters (θ) give rise to the stochasticity associated 

with the subpopulation coefficients βj and could represent, for example, an overall ef-

fect at the population level of a predictor variable on the response after accounting for 

subpopulation-level variation. When the desired sample unit is the subpopulation, the 

hierarchical model helps avoid pseudoreplication in the study (e.g., Hurlbert, 1984). 

The hierarchical model can also be thought of as a way to reconcile the results of 

separate data analyses in a meta-analysis framework. Lunn et al. (2013) sought to 

use models with similar hierarchical structure to perform meta-analysis, synthesizing 
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results across separate studies to obtain population-level inference for θ. Assuming that 

each study used stochastic sampling methods (e.g., MCMC) to fit a Bayesian model to 

obtain a sample from the posterior distribution [βj |yj ] ∝ [yj |βj ][βj ] based on the prior 

[βj ], Lunn et al. (2013) proposed a way to recursively use the results of these first stage 

analyses in a second stage to obtain population-level inference based on the full data set. 

We refer to this approach as Proposal-RB because Lunn et al. (2013) suggested using the 

posterior samples from the subpopulation-level analyses as Metropolis-Hastings (M-H) 

proposals for βj when fitting the full hierarchical model using MCMC. 

The Proposal-RB approach is comprised of the following stages: 1) Specify subpopulation-

level priors [βj ] and obtain a sample from the posterior distributions [βj |yj ] for j = 

1, . . . , J independently, then 2) fit the full model using MCMC with M-H updates for 

βj based on the previous stage posterior as a proposal (β(∗)
).j 

The M-H acceptance probability for each β(∗) 
is min(rj , 1) where rj simplifies toj 

(∗)|θ(k−1) (k−1)
[β ][β ] 

rj = j j 
, (4)

(k−1)|θ(k−1) (∗)
[β ][β ]j j 

(∗)
with β arising from the first stage posterior sample and MCMC iteration k (k = j 

(∗)
1, . . . , K). The proposals β should be independent draws from the first stage posterior j 

distribution for the cancellations to occur in the M-H ratio (4). Thus, in practice, 
(∗)

we sample β randomly (with replacement) from the first stage Markov chains toj 

reduce autocorrelation (Lunn et al., 2013; Appendix A). We then use a Gibbs, M-H, 

importance, or Hamiltonian update for the remaining model parameters θ based on�QJ 
� 

their full-conditional distribution [θ|·] ∝ [βj|θ] [θ] as usual (note that this full-j=1 

conditional distribution does not involve y). 

Benefits of the Proposal-RB suggested by Lunn et al. (2013) are that: 1) It provides 

a way to use output from a first stage analysis to fit a full hierarchical model where 

the first stage posterior distributions are well-represented, 2) it is not limited to meta-

analysis, and 3) it can dramatically simplify the M-H ratio (4) because the data model 

cancels in the numerator and denominator. Thus, using only output from J independent 

model fits and knowledge of the first stage priors [βj ], we can fit the full hierarchical 

model to obtain inference. 
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Aside from being a generally useful approach for fitting hierarchical models recur-

sively, the Proposal-RB procedure is useful in data privacy situations where the original 

data cannot be released due to proprietary reasons, public safety, or legal restrictions 

(Altman, 2018) because the data do not appear in the second stage analysis. Proposal-

RB is also trivial to implement and is naturally adapted for parallel computing environ-

ments because we can sample from each of the transient posterior distributions [βj |yj ] 

in parallel at the first stage. 

To demonstrate the Proposal-RB approach, Hooten and Hefley (2019) fit a hierarchi-

cal Gaussian model to a set of biometric data taken on a sample of blue tits (Cyanistes 

caeruleus) that arose from a study of individual-level versus population-level variation 

in wild birds. Hooten and Hefley (2019) specified a simple hierarchical Bayesian model 

with random means for each individual and showed that the results are the same when 

fitting the full hierarchical model using traditional MCMC and when using Proposal-RB. 

When the models and/or data sets are more complex, the Proposal-RB method 

can lead to computational improvements. For example, Hooten et al. (2016) and Ger-

ber et al. (2018) applied the Proposal-RB method to make population-level inference 

about resource selection by animals. In particular, Hooten et al. (2016) showed that the 

Proposal-RB approach suggested by Lunn et al. (2013) may be particularly useful for 

cases where the data model is numerically challenging to evaluate. Specifically, Hooten 

et al. (2016) considered a hierarchical point process model for animal telemetry data 

where the data model was specified as a product of weighted distributions (Patil et al., 

1977) that contained integrals of a function that included model parameters. These 

integrals were a crux in implementing the spatial point process model because an opti-

mization or stochastic sampling algorithm such as MCMC must numerically calculate 

the integral repeatedly when fitting the model to data. The Proposal-RB approach used 

by Hooten et al. (2016) simplified the sampling procedure in the second stage analysis 

substantially because the integrals in the data model did not need to be calculated again 

after the first stage, resulting in a procedure that required less computational time than 

fitting the full model jointly. 

Overall, the Proposal-RB method is useful for fitting certain classes of hierarchical 
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models to data that are naturally partitioned. However, Proposal-RB does not directly 

translate to non-hierarchical models and cases where the data are not conditionally inde-

pendent. When the data are not conditionally independent, we can still fit independent 

models for each partition in the first stage, but the data model will not cancel in the 

second stage M-H updates for βj . If the data model is trivial to calculate, it is possible 

that the Proposal-RB approach may still be useful, but data models with dependence 

(e.g., Gaussian process models) can be numerically challenging to calculate repetitively. 

Similarly, for non-hierarchical models, natural partitions of the data may not exist 

and it becomes more difficult to envision useful partition-specific first stage models. 

While it may be possible to contrive an auxiliary variable approach that augments a 

non-hierarchical model with an artificial latent process (e.g., Albert and Chib, 1993), we 

propose a simpler alternative in what follows. 

2.3 Prior-Proposal-Recursive Bayesian Inference 

Proposal-RB is useful for meta-analysis and fitting hierarchical models, but the con-

cepts in Proposal-RB do not automatically transfer to non-hierarchical models, or if so, 

may not be helpful computationally. Therefore, we propose a combination of Prior- and 

Proposal-RB (hereafter, PP-RB) concepts that makes RB more accessible to practition-

ers and facilitates inference for model parameters for a wide class of Bayesian models. 

Our PP-RB approach assumes the data can be partitioned as described earlier such 

that y ≡ (y1 
0 , . . . , yJ 

0 )0 and we can implement the Prior-RB procedure for recursively 

fitting the full model in stages. To implement the PP-RB approach, we first obtain 

a sample from [θ|y1] as before, then, for the next J − 1 stages, we recursively obtain 

samples from 

[θ|y1:j ] ∝ [yj |θ, y1:(j−1)][θ|y1:(j−1)] , (5) 

for j = 2, . . . , J . Borrowing the technique from Proposal-RB where we use the transient 

posterior from the previous stage as the proposal (in addition to the prior, as in Prior-

RB), our M-H acceptance probability for the jth stage and kth MCMC iteration can be 

written as min(rj , 1) with 
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[yj |θ(∗) , y1:(j−1)][θ
(∗)|y1:(j−1)][θ(k−1)|y1:(j−1)] 

rj = , (6) 
[yj |θ(k−1) , y1:(j−1)][θ

(k−1)|y1:(j−1)][θ(∗)|y1:(j−1)] 
[yj |θ(∗) , y1:(j−1)] 

= , (7)
[yj |θ(k−1) , y1:(j−1)] 

where θ(∗) is the kth realization from the transient posterior sample from the previous 

stage. Notice that the M-H ratio in (7) consists only of a ratio of the conditional data 

models. Thus, the PP-RB approach still requires the knowledge and calculation of the 

conditional data model at each MCMC iteration and stage. However, because the set 

of posterior realizations we use as proposals throughout the procedure are acquired as a 

result of the first stage analysis, we can pre-calculate the log density (or mass function) 

of the conditional data model for each proposal θ(∗) in parallel between stages 1 and 2 in 

the procedure. With values for the numerator in the M-H ratio resulting from our quasi-

prefetching technique (i.e., the pre-calculation of log densities for all possible proposals 

of θ; Brockwell, 2006), performing the updates for θ is less computationally intensive. 

Furthermore, because we need only save the values for log[yj |θ(∗) , y1:(j−1)] after the first 

stage, the PP-RB approach has low memory requirements between stages. 

3 PP-RB Application to Geostatistics 

Our PP-RB approach can be applied to fit a wide range of Bayesian models recursively. 

As a first demonstration of the PP-RB method, we apply it to fit the standard geo-

statistical model (Cressie, 1993), which is very commonly used in environmental and 

ecological applications. The data used for this illustration are measurements of sea sur-

face temperature (SST) on the eastern and northern Bering Sea shelf near the Pribilof 

Islands, Alaska. The data were obtained as part of the 2017 NOAA Fisheries bottom 

trawl surveys used to assess the condition of groundfish stocks in the Bering Sea. The 

SST measurements are collected in the same locations as the fishing trawls (Figure 1, 

‘FULL’). There are n = 520 observations in this data set spaced on a 20km grid with 

additional locations surveyed near the Pribilof Islands and St. Matthew Island. 

11 



Figure 1: Sea surface temperature measurements (oC) from NOAA Fisheries 2017 

bottom trawl survey on the eastern and northern Bering Sea shelf off the coast of 

Alaska. The ‘FULL’ plot depicts all data together, while the remaining plots show 

the locations used in each partition of the data for the PP-RB approach. 
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Parametric geostatistical modeling involves the use of Gaussian processes that are 

ubiquitous throughout many different fields. The use of Gaussian processes in spatially-

explicit models has a long history in statistics, but has experienced a resurgence lately 

due to the need to flexibly and efficiently model large data sets and provide optimal 

predictions in space and time (e.g., Gelfand and Schliep, 2016; Hooten and Johnson, 

2017; Heaton et al., 2019). 

For this example, we specify a version of the full Bayesian geostatistical model (Arab 

et al., 2017) as 

y ∼ N(Xβ, Σ(σ2, φ, τ 2)) (8) 

β ∼ N(µβ, Σβ ) (9) 

σ2 ∼ Inv-χ2(α1, α2) (10) 

φ ∼ half-N(0, γ) (11) 

τ 2 ∼ Unif(0, 1) (12) 

where the full data set is denoted as y ≡ (y1, . . . , yn)0 and comprises observations of 

SST (oC) at locations s1, . . . , sn in continuous space S. The spatial covariance of y is 

modeled with sill, range, and nugget parameters as 

Σ(σ2, φ, τ 2) ≡ σ2((1 − τ 2)R(φ) + τ 2I) . (13) 

We used a Matérn (Matérn, 1986; Guttorp and Gneiting, 2006) covariance function with 

smoothness parameter set to 3/2 to model the latent spatial structure and parameterize 

the correlation matrix R(φ). The entries of the correlation matrix are Rij = (1 + 

dij /φ) exp(−dij /φ), where φ is a parameter that controls the range of spatial structure 

and the Euclidean distance between locations si and sj is dij = ||si −sj ||2. For simplicity, 

the spatial process is assumed to be second-order stationary and isotropic (although our 

PP-RB approach can be applied in cases with more general assumptions as well). For 

covariates, we used the easting and northing associated with each spatial location. 

The full posterior distribution associated with our geostatistical model is [β, σ2, φ, τ 2|y] ∝ 

[y|β, σ2, φ, τ 2][β][σ2][φ][τ 2]. To fit the full geostatistical model in (8)–(12), we con-
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structed a MCMC algorithm based on conjugate updates for β and σ2 , and used a M-H 

update for φ and τ 2 (see Appendix B for details on the implementation). For our exam-

ple, we used conjugate Jeffreys specifications (Jeffreys, 1946) for the priors [β] ∝ 1 and 

[σ2] = 1/σ2 . 

The general PP-RB procedure to fit the Bayesian geostatistical model for J > 3 

partitions of the data involves the following steps: 

1. Partition the data into y ≡ (y1 
0 , . . . , yJ 

0 )0 subsets. 

2. Stage 1: Fit the Bayesian geostatistical model in (8)–(12) to the first partition of 

data to yield a MCMC sample from [β, σ2, φ, τ 2|y1] resulting in realizations β(k) , 

σ2(k), φ(k), τ 2(k) for MCMC iteration k = 1, . . . , K. 

3. Calculate log[yj |β(k), σ2(k), φ(k), τ 2(k), y1:(j−1)] for realizations k = 1, . . . , K and 

partitions j = 2, . . . , J , in parallel. 

, σ2(k)4. Stage 2: Perform block M-H updates for model parameters using β(k) , φ(k), 

and τ 2(k) randomly from the first stage transient posterior as proposals in (7) 

according to Appendix A. 

5. Stage 3: Sampling randomly from the resulting MCMC sample from the second 

stage as proposals (Appendix A), perform the third stage M-H updates based on 

the ratio (7). 

6. Stages 4–J : Repeat for all stages, conditioning on the posterior from the previous 

stage each time. 

The precalculation step between stages 1 and 2 in our PP-RB procedure is the com-

putational crux because we must evaluate the log density of the conditional Gaus-

sian distribution repetitively. Based on well-known multivariate Gaussian properties 

(e.g., Gentle, 2007), the jth conditional data distribution for our geostatistical model is 

˜[yj |β(k), σ2(k), φ(k), τ 2(k), y1:(j−1)] = N(µ̃j , Σj ), with conditional mean and covariance 
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µ̃j ≡ Xj β + Σj,1:(j−1)Σ
−1 (14)1:(j−1),1:(j−1)(y1:(j−1) − X1:(j−1)β) , 

Σ̃ 
j ≡ Σj,j − Σj,1:(j−1)Σ

−1 Σ1:(j−1),j . (15)1:(j−1),1:(j−1) 

Thus, to evaluate the conditional data model, we must calculate two matrix inverses 

as well as several matrix products and a determinant. The floating point operations 

(FLOPS) associated with inverting Σ1:(j−1),1:(j−1) are the most numerically intensive, on 

the order of O(n3 ) (where n1:(j−1) is the dimension of y1:(j−1)), which is less than1:(j−1) 

O(n3) required for the full data set. In the case where we have two equal sized partitions 

(i.e., J = 2), the FLOPS associated with matrix inverses are O(2(n 
2 )

3) = O(n 
4 

3 
), four 

times less than for the full data set. Additionally, after the log conditional data model is 

evaluated for a given set of parameters, we do not need to retain its mean and covariance 

matrix, which reduces our storage requirements substantially. 

We applied the PP-RB approach to fit the Bayesian geostatistical model to the SST 

data using J = 3 partitions and K = 200000 MCMC iterations. Figure 1 shows the full 

spatial data set and the J = 3 partitions of data, subsampled randomly from the full 

data set. The computational time required to perform the entire PP-RB procedure based 

on a first stage model fit with K = 200000 MCMC iterations was 1.7 hours whereas the 

time required to fit the full model with the same number of MCMC iterations was 6.9 

hours. Thus, our PP-RB approach based on J = 3 random partitions of the spatial 

data resulted in an algorithm that was approximately 4 times faster to obtain the same 

inference from the exact model without approximating the covariance function. 

We summarized the inference resulting from the two model fits in Figure 2, where 

the 95% credible intervals and posterior means for each parameter are shown for the 

full model (in black) and for each stage of the PP-RB procedure in colors ranging 

from red (stage 1) to green (stage 3). It is clear that our inference concerning all 

geostatistical model parameters improves as we fit the models in each stage of the PP-

RB procedure recursively (the green credible intervals match the black ones in Figure 2). 

In particular, for the β3 regression coefficient (associated with the northing covariate), 

our inference changes from non-significant to significantly different than zero (based on 

15 



−
5

0
5

10

parameter

va
lu

e

β1 β2 β3 σ2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Stage

1
2
3
Full

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

parameter

φ τ2

●

●

●

●

●

●

●

●

●

●

●

●

Stage

1
2
3
Full

Figure 2: Posterior means (points) and 95% credible intervals resulting from fitting 

the Bayesian geostatisical model to the full data set (black) and for each partition 

j = 1, . . . , 3 using the PP-RB approach. 

the 95% credible interval) between the second and third stages as the credible interval is 

shrunk toward the full-data posterior when we incorporate additional partitions of data. 

4 PP-RB Application to Online Updating 

To illustrate the PP-RB approach for “online” updating (i.e., a strategy for efficiently 

assimilating new data as they become available; Shifano et al., 2016; Wang et al., 2018), 

we analyzed temporal data resulting from surveys of Steller sea lion populations. Steller 

sea lions are listed as endangered under the U.S. Endangered Species Act over much 

of their geographic range. The National Marine Fisheries Service of the U.S. Federal 

Government monitors the status of this species in Alaska by conducting aerial surveys to 

count the number of sea lion pups born in the Aleutian Islands and Gulf of Alaska each 

year. We focused our analysis on counts at two different rookery sites (Marmot and 

Sugarloaf) monitored during 1978–2013; although both sites were not surveyed every 

year and survey effort was generally sparse early in the monitoring program. The Steller 

sea lion pup count data are available in the R package ‘agTrend.’ 
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We analyzed Steller sea lion pup counts using the hierarchical model 

ys,t ∼ Pois(λs,t), (16) 

log(λs,1) ∼ N(µ1, σ1
2) , (17) 

log (λs,t) ∼ N(φs + log (λs,t−1) , σs 
2) , (18) 

φs ∼ N(0, σφ 
2) , (19) 

σs 
2 ∼ IG(α, β) , (20) 

where ys,t is the observed pup count at sites s = 1, 2 (i.e., Marmot and Sugarloaf sites) 

in year t = 1, . . . , T (see Appendix C for implementation details). These sites were not 

monitored in year T + 1 = 2014, thus we sought to use the available data from 1978 

through 2013 (ys,1:T ) to predict sea lion pup count intensity in the year 2015 (λs,T +2) 

as rapidly as possible after obtaining the subsequent observations ys,T +2. We used the 

PP-RB approach to accomplish this task without the burden of fitting the model to the 

full data set. 

In the context of online updating, we assume a first-stage analysis has been conducted 

based on previous pup counts ys,1:T resulting in a MCMC sample comprised of θ( 
s
k) ≡ 

(k) 2(k)
(φs , σs , λ( 

s
k))0 (where k = 1, . . . , K indexes MCMC iterations from the first-stage 

analysis). When new data ys,T +2 arrive and we wish to update inference using the 

second-stage algorithm, we first sample the new intensity parameters λs,T +1 and λs,T +2 

from their predictive distributions 

� � � � � � 
(∗) 

φ(k) (k)
log λ ∼ N + log λ , σ2(k) , (21)s,T +1 s s,T s � � � � � � 

(∗) (∗)
φ(k)log λ ∼ N s + log λ , σs 

2(k) . (22)s,T +2 s,T +1 

Then, the kth M-H acceptance ratio to update all parameters, including λs,T +2, in the 

second-stage analysis is 
(∗) (∗) (∗) (k−1) (k−1)

[ys,T +2|λs,T +2][λs,T +2, λs,T +1, θs 
(∗)|ys,1:T ][λs,T +2, λs,T +1, θ

( 
s
k−1)|ys,1:T ] 

r = , (23)
(k−1) (k−1) (k−1) (∗) (∗)

][λ , λ , λ [ys,T +2|λs,T +2 s,T +2 s,T +1, θs 
(k−1)|ys,1:T ][λs,T +2 s,T +1, θs 

(∗)|ys,1:T ] 
(∗)

[ys,T +2|λs,T +2] 
= , (24)

(k−1)
[ys,T +2|λs,T +2] 
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which simplifies to a function containing only Poisson probability mass functions result-

ing from the fact that the proposal distribution for (λs,T +2, λs,T +1, θs) is [λs,T +2, λs,T +1, θs|ys,1:T ], 
(∗)

which is sampled during the first-stage analysis. As before, we draw proposals λs,T +2 

randomly with replacement from the stage one MCMC posterior predictive sample (Ap-

pendix A) and accept the proposal with probability min(r, 1). 

To compare the PP-RB method for online updating with the model fit to the entire 

data set simultaneously, we used K = 100000 MCMC iterations for both the full data 

set (ys,1:T and ys,T +2) and the data set without the last year of data (ys,1:T ). We then 

relied on the PP-RB method to assimilate the final year of data ys,T +2 in a second 

algorithm using the M-H updates described in (24). Although predictions from the first-

stage analysis were highly uncertain (i.e., wide red credible intervals in Figure 3), upon 

incorporation of the new data (ys,T +2), inference was virtually identical to the full-data 

posterior (i.e., green and black credible intervals match in Figure 3). For this analysis, 
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Figure 3: Posterior means (points) and 95% credible intervals (vertical lines) for 

Steller sea lion pup count intensities λs,T +2 at two sites in the Aleutian Islands, 

AK for year T+2=2015. The black intervals correspond to the results from the 

full model, whereas the red and green intervals correspond to the inference obtained 

from the first- and second-stages of the PP-RB analysis. 
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updating our inference using the second-stage algorithm and the final year of data was 

59 times faster than fitting the model to the full data set simultaneously. 

5 Discussion 

In this era where new data are constantly streaming in and both sensing and storage 

technology are improving, online statistical models have become more challenging to fit 

efficiently. Dietz et al. (2018) made a strong case for the need to fit statistical models to 

incoming data operationally and regularly provide iterative forecasts based on important 

ecological and environmental data streams. Statistically rigorous recursive inference and 

forecasting is clearly useful in all fields, but existing methods for assimilating new data 

recursively or performing meta-analysis may be inaccessible to practitioners or com-

putationally infeasible. Our PP-RB approach relies on well-known Bayesian updating 

principles and commonly used MCMC methods for fitting models. The PP-RB approach 

combines two existing RB concepts (i.e., Prior- and Proposal-RB) to result in a broadly 

applicable multi-stage technique for fitting Bayesian models sequentially to partitioned 

data sets. 

Overall, the PP-RB method we presented is very accessible to practitioners because it 

relies on a first-stage posterior sample (that can be acquired using automated software) 

followed by a sequence of simple M-H updates. The multicore architecture of modern 

computers can be leveraged to accelerate the PP-RB by precomputing the conditional log 

likelihoods for each first-stage MCMC sample in parallel, but parallel computing is not 

necessary to use PP-RB in general. For example, when the results of a previous analysis 

are available and we only seek to obtain inference based on a single new incoming data 

partition (i.e., partition yJ ), no recursion is necessary. In that case, we simply condition 

on the most recent model output (i.e., based on partitions y1:(J−1)). 

The main challenge associated with the PP-RB method is that we need to eval-

uate conditional log likelihoods. The PP-RB procedure is straightforward when the 

conditional log likelihood function is analytically tractable (such as for the multivariate 

normal distribution), but approximation of the conditional log likelihood must be used 
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when it is not tractable. We have had good success approximating the conditional log 

likelihood using SMC and, in some cases, pseudo-likelihood approaches in a variety of 

other applications. 

The data partitions required in PP-RB need not correspond to a meaningful as-

pect of space, time, or model structure, but in some cases, natural partitions may be 

available (i.e., spatio-temporal data) and can be used. In fact, partition design is an 

important area of future research related to PP-RB because it could lead to optimal re-

cursive strategies and even faster inference. In fact, Gramacy et al. (2015) and Guinness 

(2018) explored similar concepts related to the design of partitions for fitting approxi-

mate Gaussian process models more efficiently. Those partitioning concepts can be used 

in conjunction with our PP-RB approach and may extend to a broader set of Bayesian 

statistical models. However, poorly selected partitions may result in suboptimal infer-

ence because the early stages could result in MCMC samples that do not adequately 

explore the correct posterior in practice. For example, Zimmerman (2006) found that 

designs with clusters comprised of sampling locations that are near each other in space 

facilitate the estimation of covariance parameters in geostatistical models. 

Many other approaches to Gaussian process approximations have been developed 

over the past several decades and are appearing with greater regularity recently. For ex-

ample, Vecchia (1988) presented a Gaussian process approximation based on the same 

type of recursive expression of the data model we used in our geostatistical example 

from the previous section (also see Stein, 2004; Huang and Sun, 2016; Katzfuss and 

Guinness, 2018). This concept led to several recursive approaches to developing approx-

imate Gaussian process models that have been proposed recently, including predictive 

processes (Banerjee et al., 2008) and nearest neighbor predictive processes (Datta et 

al., 2016; Finley et al., 2018), both of which are compatible with our PP-RB method. 

Furthermore, any of the alternative approaches for approximating Gaussian process co-

variance matrices using reduced-rank or sparse parameterizations (e.g., Higdon, 2002; 

Furrer et al., 2006; Cressie and Johannesson, 2008; Wikle, 2010; Lindgren et al., 2011; 

Gramacy et al., 2015; Nychka et al., 2015; Katzfuss, 2017) are also compatible with our 

PP-RB method, as long as they are applied in a Bayesian context (also see Heaton et al., 
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2019 for an excellent review). Finally, there may be value in pairing subsampling meth-

ods (e.g., Liang et al., 2013; Kleiner et al., 2014; MacLaurin and Adams, 2015; Barbian 

and Assuncao, 2017) with PP-RB to reduce computational requirements further. 

The natural recursive nature of the PP-RB method is not limited to use for improv-

ing computational efficiency, it also reconciles well with optimal design and monitoring 

strategies. Optimal adaptive design, especially in the spatio-temporal context, is becom-

ing more popular in environmental (e.g., Wikle and Royle, 1999, 2005) and ecological 

statistics (e.g., Hooten et al., 2009, 2012; Williams et al., 2018). Our PP-RB method can 

be used to rapidly assimilate new data and characterize posterior forecast distributions 

that can be optimized to reduce the uncertainty associated with ongoing monitoring 

efforts without requiring a reanalysis of the entire cumulative data set. 

In terms of alternative methods for efficient Bayesian computing, a variety of com-

puting strategies have become popular because of increasing computational demands due 

to larger data sets and more complex models. For example, related classes of comput-

ing strategies are: Consensus MC (Scott et al., 2016), Weierstrass samplers (Wang and 

Dunson, 2013), embarrassingly parallel MCMC (Neiswanger et al., 2013), and Modular 

Bayes (Jacob et al., 2017), among others. 
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Appendix A 

The cancellations in the M-H ratios (i.e., equations (4), (7), and (24)) occur when our 

proposed parameter values independently arise from the proposal distribution. Lunn et 

al. (2013) suggested sampling the proposals randomly with replacement from the stage 

one Markov chains to reduce dependence. To illustrate this concept, we denote the stage 
(∗,k)

one Markov chain values for the parameters in (4) as β for k = 1, . . . , K MCMCj 

iterations. Then if we sample our proposal at random from those values, the implied 
(∗,k)

proposal distribution is a categorical distribution on the set of β with probabilities j 

(∗,k) PK (∗,ν)
[β |yj ]/ [β |yj ] for k = 1, . . . , K. Because the denominator sums over thej ν=1 j 

space of β in our proposal, it is a function of the data f(yj) only. Thus, the proposal 

distribution has the form 

(∗,k)
[β |yj ]j (∗,k)∝ f(yj)[β |yj ] , (25)jPK (∗,ν)

[β |yj ]ν=1 j 

(∗,k)∝ [β |yj ] , (26)j 

(∗,k) (∗,k)∝ [yj |β ][β ] , (27)j j 

as required in (4). Other options could involve thinning the stage one MCMC sample to 

reduce dependence in the proposed values or randomly permute the stage one MCMC 

sample (Hooten and Hefley, 2019). Thinning is the most common way to reduce de-

pendence in the MCMC sample before making inference using Monte Carlo integration, 

but it may reduce the number of possible proposal values in Proposal-RB and PP-RB 

substantially. By contrast, permuting the stage one MCMC sample will not remove 

the dependence in the Markov chains completely, but does allow us to use the entire 

set of potential proposals from the first stage (unlike the sampling with replacement 

approach). 

Appendix B 

The Bayesian geostatistical model for the full data set y was specified as 
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y ∼ N(Xβ, Σ(σ2, φ, τ 2)) (28) 

β ∼ N(µβ, Σβ ) (29) 

σ2 ∼ Inv-χ2(α1, α2) (30) 

φ ∼ half-N(γ2) (31) 

τ 2 ∼ Unif(0, 1) (32) 

We fit the Bayesian geostatistical model to the full data set using K = 20000 MCMC 

Σ−1iterations and hyperparameters µβ = (0, 0, 0)0 , β = 0 (i.e., flat prior), α1 = 0, 

α2 = 0, and γ = 0.05. The coordinates for the spatial locations were scaled to be within 

[0, 1] × [0, 1] and the γ = 0.05 choice implies that ≈ 95% of the posterior mass for 

the effective range of spatial correlation lies between 0 and 1/3 the maximum distance 

between spatial locations. 

The full-conditional distributions for this geostatistical model are conjugate for β 

and σ2 . For β the full-conditional distribution is [β|·] = N(A−1b, A−1) with 

A ≡ X0Σ−1X + Σ− 
β 
1 , (33) 

b ≡ y 0Σ−1X + µ 0 β Σβ 
−1 . (34) 

For σ2 the full-conditional distribution is [σ2|·] = Inv-χ2(α̃1, α̃2) with 

α̃1 ≡ n + α1 , (35) 

α1α2 + nS2 

α̃2 ≡ . (36)
α1 + n 

where S2 = (y − Xβ)0((1 − τ 2)R(φ) + τ 2I)−1(y − Xβ)/n 

The full-conditional distribution for the spatial parameters φ and τ 2 will not be 

conjugate, but we can sample it using an M-H update in the first-stage algorithm. We 

write the full-conditional distribution for φ and τ 2 as 

[φ, τ 2|·] ∝ [y|β, σ2, φ, τ 2][φ][τ 2] . (37) 
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We use the random walk method with rejection sampling for proposing values of 

(φ(∗), τ 2(∗)) (where we reject the update when φ(∗) or τ 2 ≤ 0 and τ 2 > 1), the resulting 

M-H ratio is 

N(y|Xβ(k) , Σ(σ2(k), φ(∗), τ 2(∗)))half-N(φ(∗)|γ) 
r = . (38) 

N(y|Xβ(k) , Σ(σ2(k), φ(k−1), τ 2(k−1))half-N(φ(k−1)|γ) 

The random walk proposal distribution is adaptively tuned to reach an acceptance rate 

of ≈ 0.3. 

Appendix C 

The full BHM for the Steller sea lion count data (ys,t) is specified as 

ys,t ∼ Pois(λs,t) , (39) 

log(λs,1) ∼ N(µ1, σ1
2) , (40) 

log (λs,t) ∼ N(φs + log (λs,t−1) , σs 
2) , (41) 

φs ∼ N(0, σφ 
2) , (42) 

σs 
2 ∼ IG(α, β) , (43) 

for s = 1, . . . , 2 and t = 2, . . . , T . For hyperparameters, we specified µ1 = 8.7, σ1
2 = 1.69, 

σφ 
2 = 1, α = 1, and β = 20. 

We fit this full model using a MCMC algorithm and K = 100000 iterations with 

conjugate updates for model parameters φs and σs 
2 , and M-H updates for λs,t for all s 

and t. The full-conditional distributions for model parameters are as follows. For φs, 

the full-conditional is [φs|·] = N(a−1b, a−1), with 

T − 1 1 
a ≡ + , (44)

σ2 σ2 PT

s φ 

(log(λs,t) − log(λs,t−1))
b ≡ t=2 . (45)

σs 
2 

For σ2 the full-conditional is [σ2|·] = IG(α̃, β̃), withs s 
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T − 1 

α̃ ≡ + α , (46)
2 !−1PT 

˜ t=2(λs,t − φs − λs,t−1)
2 1 

β ≡ + . (47)
2 β 

For log(λs,t) the full-conditionals are as follows. For t = 1, the full-conditional is 

[log(λs,1)|·] ∝ [ys,1|λs,1][log(λs,2)|φs, σ
2 , log(λs,1)][log(λs,1)] , (48)s 

for t = 2, . . . , T − 1, the full-conditional is 

[log(λs,t)|·] ∝ [ys,t|λs,t][log(λs,t+1)|φs, σ
2 , log(λs,t)][log(λs,t)|φs, σ

2 , log(λs,t−1)] , (49)s s 

and, for t = T , the full-conditional is 

[log(λs,T )|·] ∝ [ys,T |λs,T ][log(λs,T )|φs, σ
2 , log(λs,T −1)] . (50)s 

We used random walk Metropolis proposals for the log intensity state variables such 

that log(λs,t)
(∗) ∼ N(log(λs,t)

(k−1), σ2 ).tune 
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